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Abstract

During production, batch processes generate batch data and time-series values. The former contains
start/end dates of production from the archived Manufacturing Execution or Batch Control systems.
Furthermore, it may contain several quality-related or custom attributes. The time-series values are
gathered by sensors and controllers containing information about production delays/variability. These
data are valuable to build process models to support decision-making in planning and scheduling. Due to
the repetitiveness nature of batch processes, there are reproducible behaviors among the data. Thereby,
Machine Learning (ML) algorithms have been exploited for generating batch statistics. However, the
practical use of these techniques is arduous by the noise in the data (transient, stochastic, and discrete),
scarcity of quality data to train the algorithm, or process disturbances.

The main ambition of this work is to develop a benchmark model of a batch process to generate
data where active challenges, disturbances, and noise are fully controlled. The process is viewed at
the unit level with filling, processing, draining, and cleaning operations; the raw-materials loads are
valve-controlled; and, served by hot and cold utilities. The simulation is limited to mass balances
with chemical reactions and kinetics being omitted (not relevant for the intended ML application).
Several scenarios were generated where 21 disturbances of different types, causes, or fault origins are
injected (isolated or combined) in the implementation for testing and comparison of ML algorithms.
The scenarios were grouped into six benchmark cycles with increasing levels of complexity in terms of
intensity and duration tackling major challenges in ML.
Keywords: Benchmark Batch Process Model, MATLAB Simulink Stateflow, Hybrid Dynamic
Simulation, Process Modelling, Machine Learning

1. Introduction

Batch processes are ubiquitous in pharmaceutical
and fine-products industries [4]. They are charac-
terized by cyclic operations of one or several units
that are filled with material, perform their desired
task for a given duration, shut down, drained, and
cleaned before the next cycle starts [8]. The op-
erations sequence and parameters follow a specific
recipe or production schedule, typically based on
heuristics and experience [7, 23]. In practice, dis-
turbances and noise distress the execution of the
production schedule [16]. Consequently, production
planning needs to make robust production plans
which allows for variability without having delays
at the customer end [6].

Decisions in planning and scheduling are based on
batch data (also designated as event-data) which
generally contain start and end dates of produc-
tion, and may contain further quality-related or
custom attributes (such as product content). The
time-series values (gathered by the sensors and

controllers during production) of the process con-
tain information about the start, end, delays, and
variability of the process. For that reason, time-
series values are of interest to the planner, although
not ordinarily used in planning without previous
processing and analysis [4, 19]. Batch data are
needed to evaluate and optimize production plan-
ning, scheduling, and a wide range of retrofit opti-
mization projects which can lead to better economic
and environmental results. This can be done in sev-
eral ways (e.g., by experts and Microsoft Excel cal-
culations) but process modelling and discrete-event
simulation is one method that can be used [1, 7].

The development and application of mechanis-
tic models are often not economically practical for
complex batch processes especially if involving a
large number of equations with a significant num-
ber of process variables. For that principle, it is
required several experiments for model parameteri-
zation and, the time necessary to develop the model
can be quite long. As such, systems that ordi-
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narily contain non-linear continuous equations and
need a discrete-event handler require a specialized
solver [6]. Hybrid simulation coupled with empir-
ical models allows to train the model in an easier
way (parameter estimation); to update/adapt more
frequently; and, to solve it in real-time. Combin-
ing both time-driven and event-time environments
still allows for fast execution if beyond the simple
mass balance (reduced to a single component)—no
further heat, or mass transfer phenomena, or reac-
tion kinetics are included. The implementation of
a continuous-discrete simulation can be modeled by
combining Stateflow® and Simulink® [27].

Information about the start and end points of a
production schedule is not always generated dur-
ing production which turns into an obstacle to
data analysis and process optimization (data-driven
methods as well as mechanistic models). If these
data are not generated during production, they
need to be generated later on. One possibility to
accomplish that goal is to rely on time-series data
of process measurements which are much more fre-
quently archived than batch data.

ML describes the ability of an algorithm to learn
from data [9]. Due to the inherent repetitiveness
of batch processes which are based on standardized
recipes, there are reproducible patterns among the
data. It is expected that ML can assist humans
in generating predictions based on time-series data,
which can be a challenging task. For this work, su-
pervised methods of ML were used for the genera-
tion of interpretable batch data—the system learns
by already being provided labels. ML performance
is affected by several factors, decreasing when there
is noise within the data (transient, stochastic and
discrete), low amount of quality data to train the
algorithm, and disturbances in the process (wrong
operator interventions, breakdowns, unknown spec-
ifications of raw materials, among others) [9].

A comparatively large effort is needed for model-
based process optimization on batch processes given
its dynamic character and complexity (sequence of
operations with possibly some occurring in paral-
lel). As a result, the development and validation
of dynamic models are often expensive or even im-
possible for batch processes in contrast with con-
tinuous processes, which have been plainly stud-
ied [2]. Other challenges might appear in model-
building not just due to the complexity of batch
process plants. Incomplete monitoring, model-
uncertainties, and complex manual operations can
create reasonable doubts about the quality of data
acquired after implementation [4]. Batch systems
are also computationally more expensive to study
since it involves solving numerical differential equa-
tions due to the absence of steady-state [3]; and,
chemical processes are non-linear which also makes

it more difficult for an ML algorithm to predict be-
havior. In practice (in real production data), it is
very difficult to know which challenges a data set
contains. There are too many disturbances, noise
in parallel, and the origin of the data is not fully
known. Hence, developing a batch process that
serves as a benchmark model for the development
and study of data-driven techniques, in particular,
ML.

This motivates the contribution of a benchmark
model for the development and testing of ML al-
gorithms for batch phase-detection problems. By
working with simulated data where there is full
control of the active challenges, disturbances, and
noise, a study is made focusing on what makes an
ML algorithm function and fail.

This article is structured as follows: the bench-
mark process is described in Sec. 3 after providing
the base knowledge required for the understanding
of the implementation in Sec. 2. The disturbance
mapping and functionality of the simulation with
and without disturbances are provided in Sec. 8 fol-
lowed by a review of the ML algorithm feasibility
study. The paper closes in Sec. 9 with some final
remarks and suggestions for further work.

2. Background

This section provides a brief background on the typ-
ical causes for sensor noise and process disturbances
that can be found in batch processes, whose inclu-
sion in the benchmark process model is discussed in
Sec. 6.

2.1. Sensors

In the chemical and biochemical industries, temper-
ature, flow rate, pressure, level, and weight sensors
need to be installed to monitor the processes and
enable safe operation. Tab. 1 summarizes the typi-
cal causes of noise to be found [22].

At this point, it is convenient to distinguish be-
tween noise and disturbances. While disturbances
are meant to be abnormal behaviors that deviate
the operation from the expected course; process
noise is naturally occurring fluctuations in instru-
mentation signals and in the process (e.g., agitation
or solids being added through a hatch).

2.2. Disturbances

In a realistic setting, industrial processes are sub-
ject to disturbances and uncertainties affecting the
normal practice of an industrial site [10]. These
disturbances can result from a variety of sources,
including external environmental variables, as dis-
cussed in Tab. 2; and, the occurrence can be random
or have an underlying pattern (systematic).

Because the focus of this work is to model the
phenomena which make process monitoring/fault
detection needed, a brief introduction of fault diag-
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Table 1: Causes of process and sensor noise for each
process measurement [8, 22, 24].

Process
Measurement

Causes of Noise

Temperature
- Time delays
- Multiple thermal capacities
- Compression

Flow

- Pump vibration/turbulence
- Valve malfunction
- Slugging
- Foam formation

Pressure

- Flow changes across a junction
- Cavitating pumps
- Slugging
- Air leakage and air blockage

Level

- Splashing and turbulence of liquid
entering the tank; or, agitation
- Changes on/above the surface of
the liquid, p.e. foam formation

Composition Time delays

nosis is introduced. Fault diagnosis is most useful,
not only for the detection of faults as a batch pro-
gresses but also for revealing whether or not a spe-
cific batch belongs to the desired or normal behavior
[16]. In essence, provides the knowledge to identify
disturbed or normal batches. Many of the issues
with sensor faults are related to the process data
used for the software sensor building. The chal-
lenges with process industry data are mainly from
missing values, data outliers, drifting data,
data co-linearity, sampling rates, and mea-
surement delays [14]. Modeling faults improves
the reliability and robustness of the plant by mak-
ing new decisions based on such variability [24].

Table 2: Type of disturbances and possible causes asso-
ciated with them [15, 16, 21].

Type of
Disturbances

Possible causes

Deviations in
production,
changeover
and cleaning
times

- Unknown specifications of input
material
- Changes in operating conditions
- Unavailability of resources
- Equipment malfunction
- New raw material on site

Deviations
in product
specification

- Varying consumer demand
- Unknown specifications of input
material
- Unknown side reactions
- Tuning between shifts

Equipment
failure or
malfunctioning

- Aging/Clogging of equipment
- Wrong operator interventions
- Fouling

Erroneous
sensor readings

- Faulty calibration
- Presence of solid material, ice, or
bubbles in a line

3. Benchmark Process Model
The benchmark case study consists of a batch pro-
cess with filling, processing, draining, and cleaning
operations wherein the entire process is viewed at

the unit level. That is, all operations occur in a
single vessel called Unit1 Vessel1, as depicted in the
Process Flow Diagram (PFD) of Fig. 1. Three liq-
uid raw materials (Educt1, Educt2, Educt3) and
one solid input are used in the reaction, whose loads
are valve-controlled; and, solids are added through
a hatch placed on top of the vessel. The process
model here presented is purely conceptual wherein
the goal is to have a working benchmark that cap-
tures the complexity of batch operations, featured
by time-dependent operations, phase transitions,
and disturbances of different nature.

Unit1_Vessel1

Educt1

Educt3

Educt2

Steam

Cooling Water

Streams Legend
Process Stream
Hot Utility
Cold Utility

Solids

Figure 1: Simplified process flowsheet diagram of the
benchmark process.

Besides raw materials, utilities are necessary
to obey the process design parameters and batch
recipe. It is considered that the reaction requires a
hot utility to achieve the desired gradient of tem-
perature. Although no numerical values of gradi-
ents are given, medium pressure steam is applied
(since being one of the most common hot utilities in
a chemical site). Following the reaction, the vessel
is assumed to be cooled using water as the utility.
Because most operations follow a low-temperature
gradient, it is necessary to decrease the temperature
of the vessel to assure the proper operating condi-
tions. These are abstract streams where utilities are
used for the simulation to be as close to reality.

Fig. 2 illustrates the path, operations (dark blue),
and phases (light blue) for the chosen reference pro-
cess following the nomenclature according to the
ISA-88 norm (procedural-perspective class) [12].
From ID 1 to 10, a batch is produced with all the
filling, processing, and draining operations. The
cleaning procedure, after each batch, is given by
the last operation (ID 11.1 to 11.5).

Since the focus of this work is batch phase iden-
tification, it is not the task of the ML algorithm
to model heat and mass balances. For that reason,
the simulation is limited to mass balances where
chemical reactions, and kinetics are omitted
(modeled variables are therefore vessel contents and
their sensors, as well as valves, flows, and the hatch
position). While the process just described is ap-
parently simple, complexity rises when mathemat-
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Add_Educt1  
(ID 1)

Add_Educt2 
(ID 2)

Add_Solids

Wait_Field_Operator 
(ID 4.1)

Add_Solid_Material_ 
Through_Hatch (ID 4.2)

Wait_Control_Operator 
(ID 4.3)

Centrifugation 
(ID 5)

Product_Transfer 
(ID 6)

Post_Reaction 
(ID 8)

Cooling 
(ID 9)

Material_Transfer 
(ID 10)

Reaction 
(ID 7)

CIP

Spray_Cleaning 
(ID 11.1)

PumpIn_Recirculation 
(ID 11.2)

Flush_Tank 
(ID 11.3)

Secondary_Rinse 
(ID 11.4)

Flush_Tank1 
(ID 11.5)

Add_Educt3

Add_Material 
(ID 3.1)

Agitation 
(ID 3.2)

Figure 2: Benchmark Model Recipe.

ical expressions are added to emulate different be-
haviors at the vessel level. Instead of having only
linear profiles, the vessel level can follow an expo-
nential, step, and stair function. After establish-
ing the recipe, it is necessary to specify duration
and volume conditions for the model implementa-
tion. For this purpose, the flow rate is adjusted as
a degree of freedom to connect volume with time.
Characteristics of the process such as level profile
and conditions can be found in Tables 3 and 4.

4. Simulation Computational Framework

Simulink® and Stateflow® are both visual pro-
gramming languages. While Stateflow® is based on
finite state machines and suited for discrete-event
simulation; Simulink’s primary applications are dy-
namic systems modeling and simulation. Com-
bining discrete and continuous environments has
proven to be effective and resourceful when deal-
ing with batch scheduling [5]. As such, the pro-
cess sequence as well logical behavior of operations
or phases are implemented in Stateflow® and the
continuous subsystem in Simulink®.

The simulation framework consists of continuous
and discrete systems linked to a scenario control
provided by a MATLAB script. The simulation is
initialized in Simulink®/Stateflow® with the in-
put parameters loaded in the MATLAB workspace.
The simulation is then executed, and the output
data is written in both environments. If chosen,
the output can be written back to MATLAB unless
the user interrupts the simulation in-between. Us-
ing the script allows to automate the execution of
the simulation; provide relevant instructions for the
simulation, and manage variables input and out-
put. Simulink® exports the sensor values (float-
ing values) while Stateflow® exports time start/end

points of operations (integer and floating), valve po-
sitions (binary), and event labels (strings). Tab. 5
presents all the output variables of the simulation.

Table 3: Transition trigger conditions, nominal dura-
tions, and level profiles of the benchmark process.

Event
ID

Transition
Trigger
Condition †

Nominal
Duration

Level
Profile

1 L1 PV >= 30% 3 min Linear
2 L1 PV >= 60% 3 min Linear

3.1
L1 PV >= 65%
or after(5,min)

5 min Linear

3.2 L1 PV >= 70% 5 min
Noise is
added to
the signal

4.1 after(15,min) 15 min Linear

4.2 L1 PV >= 85% 5 min
Noise is
added to
the signal

4.3 after(5,min) 5 min Linear

5

L1 PV >= 90%
Design: 5 steps
(each step with
a fixed flow rate)

increase:
3 min
inactivity:
7 min

Step

6 L1 PV <= 60% 3 h Linear
7 L1 PV >= 85% 12 h Exponential
8 after(2,h) 2 h Linear
9 L1 PV <= 70% 1 h Exponential
10 L1 PV <= 0% 5 min Linear
11.1 L1 PV >= 10% 30 min

Noise is
added to
the signal
‡

11.2 after(14,min) 14 min
11.3 L1 PV <= 0% 5 min
11.4 L1 PV >= 5% 30 min
11.5 after(2.5,min) 2.5 min

† L1 PV corresponds to the level sensor, as a percentage
of how much the vessel is filled.

‡

It is to be understood that the behavior of these phases
can not be simulated only on the discrete environment.
Noise is not meant to be corrected, it is part of the no-
minal profile of the process.

Table 4: Characteristics of the simulation.

Property Value Unit
Vessel volume 12.5 m3

Threshold volume † 6.25 m3

Batch duration 19.5 h
Cleaning procedure duration 1.4 h
Simulation Time ‡ 333 days
Inactivity Period † ‡ 5 min—2 h -

†

The vessel is curved, and as a result, the height has a lo-
garithmic profile until a threshold value, followed by a li-
near behavior. The height is given as a function of the
vessel volume with the above-mentioned threshold volume.

‡ Operation year has 333 days, already leaving a month
for cleaning and maintenance.

† ‡

The inactivity period corresponds to the time between
the end of a cleaning procedure and the beginning of a
new batch. It is set as a random duration between
5 min and 2 h differing on each new batch production.

5. Process Model Implementation
5.1. Dynamic Model of the Holding Vessel
For this particular case, the volume of the tank is
calculated from a mass balance where incompress-
ible flow and constant density at the vessel entry
and exit are assumed:
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d Volume

dt
= valveout · qout − valvein · qin (1)

By changing the binary value of valvein and
valveout, it is possible to control the liquid flow
direction. For simplicity’s sake,, the valve posi-
tions were implemented in Stateflow® instead of
Simulink®. Valves, pumps, and pipes dynamics
were not considered in this work, but these features
can be later implemented for additional complexity.

Table 5: Output variables of the simulation.

Variable
Label

Description

BatchID Number of batches produced
CleaningID Number of cleaning operations
EventFrame
ID Reference

ID of each phase/operation

EventFrame
Label Current

Label of each phase/operation

Y1 Digital Valve is only opened on Event ID1
Y2 Digital Valve is only opened on Event ID2
Y3 Digital Valve is only opened on Event ID3
Y4 Digital Valve is only opened on Event ID5
Hatch Digital Hatch opens on Event ID4.2

L1 PV
Level Sensor. Percentage of how much
the vessel is filled

H1 PV Height Sensor (m)

N1 PV
Motor Sensor (rpm) turned on from
Event ID3.2 to ID9

F1 PV
Cooling Water Flow Sensor (m3/h)
active for Event ID9

F2 PV
Steam Flow Sensor (m3/h) active
for Event ID7

Because the trigger transitions variables are
mainly volumetric, the volume is transformed to
a level signal representing the vessel filling level
(already stated in Tab. 3 as L1 PV ). This vari-
able becomes the sole input of the discrete environ-
ment and considers a vessel maximum volume of
12.5 m3—consult Eq. 2.

V olumeP =
V olume

V olumevessel
· 100 (2)

The solver used in Simulink® to integrate Eq. 1
was ode1 (Euler) with a fixed-step size of 10−3

which provides the adequate speed to simulate given
its simplicity. Even providing fast calculations,
ode1 is less accurate and stiff when comparing
to other solvers [5]. However, the solver can be
changed by the user and studied if whether it makes
a difference for the ML algorithm. This solver leads
to a numerical error within an acceptable tolerance
given the model’s level of abstraction.

5.2. Heating and Cooling
The flow rates of heating/cooling agents are as-
sumed to increase/decrease exponentially. The im-
plementation in Simulink® lies on the combina-
tion of two blocks: Transport Delay and Transfer

Fcn. Both flows have a delay of 0.05 h but with
different second-order functions parameters. The
steam and cooling water flows second-order func-
tions are given, respectively by: 10

s2+18s+15 , and
5

0.001s2+0.2s+3 . The parameters of these functions
were driven on a basis of trial-and-error.

5.3. Noise Enabler
As mentioned in Tab. 3, during specific states, noise
is added to the level signal to accomplished a spe-
cific level profile. The implementation of the Noise
Enabler is the last step of the overall implemen-
tation. Nevertheless, to simplify the reading, the
section is now presented since it appears in a con-
tinuous environment. For the phases being affected:

• Agitation: Turning the motor on for mixing
to start leads to recurrent oscillations in the
level sensor. For the implementation, it is as-
sumed the volume fluctuates between -5% and
+5%. The Repeating Sequence block provides
the model with the intended behavior.

• Adding Solids: ID4.2 profile lies on the com-
bination of two blocks: Transport Delay and
Transfer Fcn. With the current parame-
ters on Transfer Fcn (omega = 4 min and
dampingfactor = 0.4), the behavior due to
splashing and such leads to an uneven level
with diminishing spikes.

• CIP: Cleaning procedures are often masked
with heavy sensor noise due to the filling and
draining of water which induces agitation and
oscillation behaviors. For a heavy signal out-
put behavior, two Random Blocks are used
with different variations, mean values, and
sample times.

• Post Reaction: Often these operations have
small variations in volume either due to ex-
pansion/compression of volume or to changes
in the vessel temperature (p.e. using utili-
ties that increases the vessel temperature) [15].
The noise-base signal covers this physical be-
havior by having small spikes of 1% on top
of the volume measurement. The noise imple-
mentation results in equal variances and mean
values from batch to batch, but with spikes in
different points in time.

• Inactivity Period: Small spikes on the level
sensor of +10% of volume might appear. By
adding the Uniform Random Number block to
the signal, the desired behavior is obtained.

6. Disturbances Mapping and Implementa-
tion

Disturbances can be either classified by their oc-
currence or environment implementation. For sys-
tematic disturbances are to be considered: step:
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mirror time effects such as a recipe change; sea-
sonality: oscillation emulating time effects such as
season of the year; stair: for example, consecu-
tive steps (changing supplier multiple times); and,
a drift: such as a linear term overlay. Tab. 6 lists
key disturbances scenarios studied based on the in-
formation already provided in Subsection 2.2.

Disturbances are modeled stochastic, with the
user controlling likelihood and severity. For each
disturbance identification number, a different sce-
nario is simulated and by class, implementa-
tion is either in Stateflow® (ID1–10 and, 13) or
Simulink® (ID11, 12, and 14–21). For presenta-
tion sake, each disturbance has an ID which is the
same as in Tab. 6.

7. Evaluation of ML algorithms
The most common and efficiently proven algorithms
to work with time-series data in supervised learn-
ing are Random Forests (RF) and the Hidden
Markov Model (HMM) [17, 26]. The following
sections briefly analyze both algorithms, including
their differences in implementation, accuracy, and
limitations. While the HMM deals with categori-
cal features, RF uses continuous features [17]. An
introduction of the HMM and RF are provided in
[20], and [20, 25], respectively.

Several studies compare these algorithms in dif-
ferent categories: overall accuracy on labeling, clas-
sification speed, memory consumption, feature com-
putation, and model complexity. A comparison be-
tween both algorithms is provided by comparing
their performance based on a study regarding in-
ternet traffic [17]. In this particular study, the user
could be inclined to choose the RF since the over-
all accuracy is higher. Nonetheless, not even one of
the literature studies was regarding time-series data
and labels sequence recognition—which becomes an
important aspect for the feasibility study of the
benchmark model. In other studies, when using
sequence labeling with the HMM, accuracy levels
of 96% are achieved [11], and neural networks, 97%
[18]. Since the article task is identical to the stud-
ies above mentioned, one could also expect similar
results. Even though the RF is a great classifier,
the simulation of the batch process will run with
several labels and specific transitions/relations be-
tween them. This dependency between states can
not be recognized with a RF.

According to [13], three criteria can be used to
evaluate the algorithm learning performance: Ac-
curacy, Confusion Matrix, and Mean Absolute Er-
ror (MAE). Firstly, accuracy which is given by the
number of correct labels divided by the total num-
ber of labels. Secondly, a more in-depth analysis
of the results obtained is possible if a truth ma-
trix (confusion matrix) is established. It allows de-
picting the states that frequently are confused and

wrongly labeled. However, this evaluation is more
time-consuming than with accuracy. At last, the
MAE is introduced. Whether a time step repre-
sents a change point or not leads to a binary class
decision. The evaluation based on parameters such
as accuracy and precision can be troublesome since
even an error of a time step leads to a worse re-
sult. It is, therefore, easier to evaluate errors in the
identification of change points using the distance
between true and estimated change points. Within
the scope of this work, the MAE should be consid-
ered, where:

MAE =

∑#CP
i=1 | Predicted CP −Real CP |

#CP
(3)

8. Results

After establishing the nominal behavior for the ref-
erence model (Sec. 8.1), by enabling the control
center of each disturbance, it comes the possibility
of studying non-nominal behaviors. Because more
than 21 disturbances are given to the user, the pre-
sentation of each scenario would be extensive. As
such, only the results for the ML training are given
highlighting the most challenging profiles, distur-
bances, and noise for the algorithm.

8.1. Nominal Reference Model

Most disturbances are implemented within batches,
being relevant to share the level measurement of
a disturbance-free batch—Fig. 3. Regardless, the
profile of the CIP is also introduced on the same
plot.
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Figure 3: Nominal behavior of a batch and a clean-
ing procedure for the reference model with batch phase
identification.

Because there is a clear dependency between con-
tinuous and discrete variables (p.e. a valve being
triggered when a state is active), Fig. 4 plots the
relevant output variables and allows to identify such
type of relation.
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Figure 4: Nominal behavior for the relevant output vari-
ables of the reference model.

8.2. ML Feasibility Study
For this study, the simulation runs were for an entire
batch-operational year.

By following a sequence with an increasing com-
plexity level of disturbances scenarios, starting with
“single” disturbances (each one implemented sepa-
rately), each point in the sequence where the al-
gorithm fails, is a good metric for its performance.
Such arrangement is made regarding the disadvan-
tages and limitations of the HMM [28]:

• Correlation with non-linear behaviors:
There is some difficulty for ML algorithms
to recognize non-linear behaviors. For that
reason, different types of level profiles were
added: step, stair, exponential, and noisy.
Even though it is not a disturbance, these pro-
files add model complexity and should be rec-
ognized in a disturbance-free environment.

• Discretization of continuous variables:
for the HMM, in particular, it is not possible
to handle a combination of discrete and con-
tinuous variables. For the algorithm’s training,
one type of variable needs to be chosen—in this
case, the user chose the discretization of contin-
uous variables. Since discretization is accom-
plished by dividing time into smaller step-sizes,
dynamic behaviors might be lost from step to
step.

• Dependence between two consecutive
states: adding label variability which affects
the probability of an event to be recognized can
be a challenge. To clarify, one example is pro-
vided: if the training data provided has miss-
ing labels (because one operation is masked as
the previous one), the most difficult is the se-

quence to be correctly identified. This is prob-
ably the most challenging disturbance—an op-
eration/phase label simply does not appear for
the disturbed batch. As well as ID7, ID4 fol-
lows a similar line of thinking: specific phases
occur irregularly affecting how the algorithm
reads the recipe.

• Not recommended to represent multiple
overlapping features: since it is a likelihood-
based method, having multiple features linked
to a singular state might affect the density es-
timation. One example might be ID11 where a
new valve is switched on at random points in
time. Disturbances with level variability might
also affect the identification of states. If in a
scenario, the volume of a batch increases by
20% at a random number of batches, the prob-
ability density of each operation will have a
different minimum and maximum level mea-
surement. This can lead to a misconception
of labels leading to wrong identification.

In conclusion, the most problematic disturbances
scenarios will be the ones where likelihood and
dependency between consecutive states are
affected, meaning ID4, ID5, ID7, and ID11.

8.2.1 Benchmark Cycles with Multiple Dis-
turbances Scenarios and Algorithms
Evaluation

After verifying the algorithm works properly with
singular scenarios, disturbances are paired up in
groups with numerous degrees of difficulty: low to
high frequencies, durations, and amplitudes. By
providing 21 singular disturbances scenarios, a large
number of multiple scenarios can be made and it is
up to the user to decide which. However, 6 cycles
are presented as a challenge for the ML algorithm
with increasing levels of complexity from cycles A
to F. Cycle F has the same parameters as Cycle
E but, with an additional disturbance: ID7 (in-
correct label). Since variability and delays are the
most common types of disruptions in a real process,
ID1/ID2, ID5, ID12, and ID21 are enabled
for all cycles—only variability, duration, and af-
fected operations change.

The training and evaluation of the HMM and RF
are not the focus, having this complementary study
made in [13]. As this section is only to discuss those
results, an overview of the achieved accuracy and
MAE is given in Fig. 5 with following conclusions:

• Cycles A and B, as expected, present the best
results for accuracy with the MAE decreasing
slightly for the HMM on Cycle B. The overall
results indicate the RF is less able to generalize
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Table 6: Disturbances mapping and description, classified by cause. ID identification for each benchmark cycle
with multiple disturbances scenarios (second column).

ID Cycles Cause of Noise/Fault Behavior Description
1 A-F Delay of single-phase end Phase end is delayed, no change in actuation

occurs during the phase2 A-F Delay of multiple phases ends

3 C-F An irregular single-phase occurs
e.g., if the yield was found to be insufficient after
quality sample, an additional reaction step is provided

4 C-F An irregular series of phases occur The CIP does not always occur at the batch end

5 A-F Tank is filled to different final fill levels
After a specific number of batches, the volume decreases
between 30-70% of the batch size. Also, small varia-
bility of 2% to 5% can be added to final filling stages

6 † Start/End points of the label(s) are shifted
End of phase 1 happens, but logged time of phase 1
is at the beginning of phase 2, the label of which is delayed

7 F Phase wrongly labeled
It appears wrongly labeled as phase 1 lasts for the time of
the 2 phases, but the sensor measurements remain the same8 † Two consecutive phases have the

name of the first phase

9 A-F
A valve is opened and closed several
times, and nothing happens
before the material transfer starts

Instead of being opened and closed once, it happens
more times. Valve starts open

10 A-B, D-F
Valve opens and closes several times, and
nothing happens after material transfer ends

Instead of being opened and closed once, it happens
more times. Valve starts closed

11 B-F
Phase name remains the same, but the
actuation changes

A different valve is opened at several instances without that
behavior having meaning to the reference process

12 A-F A pump slowly supplies less throughput
The flow rate decreases in time. To reach the same level of li-
quid in the tank, a certain task takes more time to complete

13 A, D-F The motor provides less agitation Rotation number decreases randomly, resetting after a batch
14 C-F Utility Flow masked with noise Incremental changes in the flow with increasing spikes
15 C Loss of signal A series of data points are not written for the sensors

16 † Value outside of sensor range
If the level measurement deviates from normal values
(from 0 to 100), an error message appears

17 C, D
A sensor suffers from a gradual drift
for a period of time

Drift lasting until the end of the simulation, resulting in
volume shift, as much as the slope chosen

18 B, E-F
A sensor suffers from a gradual drift
and is suddenly recalibrated

Similar to ID15 but the sensor has a sudden
recalibration after a specific number of batches

19 B, D-F
A sensor suddenly has an offset
(recalibration or fault)

At random points in time, with small durations, the sensor
has offsets. The actuation remains unaltered

20 B-F A wide variety of sensor noise Statistical distributions: Gaussian, uniform, and waveform
21 A-F White-Band Noise Added to the signal introducing spikes in measurements
† Implemented but not included in the benchmark cycles reported here.
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Figure 5: Evaluation of accuracy and MAE for each
benchmark cycle with RF and HMM [13].

and tends to overfit. The increasing level of dif-
ficulty from Cycle A to F was almost followed
for both algorithms.

• For Cycle A, the HMM correctly estimates the
number of change points, and the recipe se-
quence is recognized and adhered to. Nonethe-
less, there is confusion where the change points
occur being incorrectly estimated. Tables
6.1 and 6.2 of [13] allow a demonstration of
the Confusion Matrix. The most problem-
atic transitions are from Centrifugation to
Product Transfer and between all phases of
the cleaning procedure. Between the HMM

and RF, the latter confuses these state tran-
sitions more often than the HMM. This con-
fusion between states might be due to heavy
noise being added the signal for the CIP—
the overlap of volumes for consecutive states
is a limitation; or, a step profile in the case of
Centrifugation.

• Cycle C was the most challenging cycle, espe-
cially for the HMM. Because the implementa-
tion of ID15 is set to be independent on the
number of batches, fewer occurrences of the
CIP ended up affecting the level profile for
a longer time. While the RF can order in-
put characteristics according to their influence
on the classification decision, the HMM always
outputs the same phase for these batches.

• The HMM could not make any predictions for
Cycle F because individual observations could
not be assigned to any state. By enabling a
label disturbance, this algorithm failed in rec-
ognizing states.

• Overall, the RF confuses more states (higher
MAE) whereas, the HMM is still able to iden-
tify the correct sequence. This is particularly
relevant when ID4 is active for Cycles C to F.
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• In summary, the HMM delivers accuracies for
four of the six benchmark cycles. Even though
the accuracy does not reach the 96% required
in Subsection 7, results are similarly reaching
the most of 92% for Cycle A.

9. Conclusions
The focus of this work was to develop a bench-
mark model to support the testing and compari-
son of ML methods in their description of batch
processes. The entire process is viewed at the unit
level with filling, processing, draining, and clean-
ing operations. The model was then used to gener-
ate data where active challenges, disturbances, and
data noise are fully controlled. Different scenarios
were generated where up to 21 disturbances of sev-
eral types, causes, or fault origins are injected into
the simulated data for testing. The scenarios were
grouped into six benchmark cycles with increasing
levels of complexity in terms of intensity, duration,
and probability.

A good balance was found by implementing the
process sequence and the disturbances using both
continuous and discrete environments. Simulink®

and Stateflow® allow simulating faster and mas-
sive simulation scenarios with low CPU in compar-
ison with mechanistic models. As it is not the task
of the algorithms to learn heat balance and kinet-
ics, the abstraction was made to not contemplate
them. Also, a trade-off between model complexity
and user-friendliness was chosen by implementing a
process recipe with the current number of valves,
event labels, and sensors; having such a model al-
lows for meaningful studies which can be under-
stood by a wide range of users.

From the algorithm’s training point of view, the
disturbances which caused the most damage on the
algorithm training were: ID7 (purpose incorrectly
labeled training data) and ID15 (loss of several sig-
nal points) combined with ID4 (phase occurring ir-
regularly). Within the scope of the work, it is clear
that HMM was able to deal with most of the imple-
mented process disruptions and was able to make
better predictions than the RF. In particular, it
was shown that the HMM can learn the sequence of
the recipe steps and correctly assess the number of
phase transitions. Errors arise in determining the
correct point in time for the phase change. For two
of the six implemented test cycles, the performance
of the HMM came short since it could not make any
predictions (Cycle F with ID7) or only poor predic-
tions (Cycle C with ID15). On the other hand, the
RF was not affected, having accuracies of 81%/79%,
respectively.

The process model here presented can be used
as the basis to incorporate in the future additional
features, including [24]: 1—A valve can be open to
a certain percentage or a certain degree. For exam-

ple, even though the valve is opened 10%, changes
might not be detected until it reaches 15% or 20%
of the opening (air blockage or slugging behaviors
are mimicked); 2—Inclusion of equilibrium- and
kinetically-controlled chemical reactions. If so, the
complexity of the process and disturbances can be
broadly increased. For instance, ID3 might have an
additional reaction step if the yield is not sufficient
to move forward in the operation; 3—Temperature
monitoring where effects of heat transfer on the sys-
tem dynamics are taken into account; 4—Study of
the hierarchical control by fixing set points, and
manipulated and controlled variables. Not many
changes would be needed as Simulink® provides
the necessary blocks for the implementation; 5—
More non-linear profiles can be added to the recipe
as steps, stairs, or noisy profiles. As discussed in
Sec. 8, these are the more problematic transitions.
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